MATH 103B – Discussion Worksheet 2 April 13, 2023

Topics: Rings and ideals (Judson 16.1-16.3)

Supplement to Lectures

Let R be a ring. For any nonnegative integer n and any element $r \in R$, we write $r + \cdots + r(n \text{ times})$ as nr.

Definition 0.1. The characteristic of a ring R is the least positive integer n such that nr = 0 for all $r \in R$.

Theorem 0.2 (Judson Theorem 16.19). The characteristic of any integral domain is either prime or zero.

Recall the definition of a unit in a ring R. Let R be a ring with unity (i.e. a ring with a multiplicative identity 1), let $R^* = \{a \in R | a \text{ is a unit}\}$. Then R^* is a group (under multiplication).

Example 0.1. $\mathbb{Z}^* = \{\pm 1\}.$

Example 0.2 (Judson Example 16.12). $\mathbb{Z}[i]^* = \{\pm 1, \pm i\}.$

Discussion Problems

Recall the definition of ideals in a ring.

Problem 1. Let R be a commutative ring with unity. Consider the ideal I = (x, y) in R[x, y]. List three elements in R[x, y] that are in I and three elements that are not in I. Then prove that I is indeed an ideal, and that I is not principal.

Problem 2. Let R be a ring with unity and I an ideal in R. Suppose $1 \in I$. Prove I = R.

Problem 3. Prove (0) is always an ideal in any ring R.

Problem 4. Let R be a ring. Show that $\varphi : R[x] \to R$ defined by $\varphi(f) = f(0)$ is a ring homomorphism. Compute ker φ . Suppose φ is instead defined by $\varphi(f) = f(1)$. Is φ a ring homomorphism.

Problem 5. Let $R = \mathbb{Z}[\sqrt{-5}]$. Consider $I = (2, 1 + \sqrt{-5}) \subseteq R$. Determine whether the following elements in R are in I: 3, 6, 1, $\sqrt{-5}$. (Bonus) Prove or disprove: I is a principal ideal in R.