MATH 103B - Discussion Worksheet 2
 April 13, 2023

Topics: Rings and ideals (Judson 16.1-16.3)

Supplement to Lectures

Let R be a ring. For any nonnegative integer n and any element $r \in R$, we write $r+\cdots+r(n$ times) as $n r$.

Definition 0.1. The characteristic of a ring R is the least positive integer n such that $n r=0$ for all $r \in R$.

Theorem 0.2 (Judson Theorem 16.19). The characteristic of any integral domain is either prime or zero.

Recall the definition of a unit in a ring R. Let R be a ring with unity (i.e. a ring with a multiplicative identity 1), let $R^{*}=\{a \in R \mid a$ is a unit $\}$. Then R^{*} is a group (under multiplication).

Example 0.1. $\mathbb{Z}^{*}=\{ \pm 1\}$.
Example 0.2 (Judson Example 16.12). $\mathbb{Z}[i]^{*}=\{ \pm 1, \pm i\}$.

Discussion Problems

Recall the definition of ideals in a ring.
Problem 1. Let R be a commutative ring with unity. Consider the ideal $I=(x, y)$ in $R[x, y]$. List three elements in $R[x, y]$ that are in I and three elements that are not in I. Then prove that I is indeed an ideal, and that I is not principal.

Problem 2. Let R be a ring with unity and I an ideal in R. Suppose $1 \in I$. Prove $I=R$.
Problem 3. Prove (0) is always an ideal in any ring R.
Problem 4. Let R be a ring. Show that $\varphi: R[x] \rightarrow R$ defined by $\varphi(f)=f(0)$ is a ring homomorphism. Compute ker φ. Suppose φ is instead defined by $\varphi(f)=f(1)$. Is φ a ring homomorphism.

Problem 5. Let $R=\mathbb{Z}[\sqrt{-5}]$. Consider $I=(2,1+\sqrt{-5}) \subseteq R$. Determine whether the following elements in R are in $I: 3,6,1, \sqrt{-5}$.
(Bonus) Prove or disprove: I is a principal ideal in R.

